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Abstract

“ The modelling and segmentation of images by MRF's (Markov Random

Fields) is treated. These are two-dimensional noncausal Markovian

Stochastic Processes. Two conceptually new algorithms are presented for
segmenting textured images into regions in each of which the data is
modelled as one of C MRF's. The algorithms are designed to operate in real
time when implemented on new parallel computer architectures that can be
built with present technology. 4 doubly stochastic'representation is used
in image modelling. Here, a Gaussian MRF is used to model textures in
visible light and infrared images, and an auto-binary MRF to model a priori
information about local image geometry. Image segmentation is-.realized as
maximum likelihood estimation. In addition to providing a mathematically

P

correct means for 1ntroduc1ng geometrlc structure, the auto-binary, (or

ot o s e ——

ternary, etc.) MRF :zan be used in a generatlve mode to generate &mage
geometries and artificial images, and such simulations constitute a very
powerful tool for studying the effects of these models and the appropriate
choice of model parameters. The first segmentation algorithm is
hierarchical and uses a pyramid-like structure in new ways that exploit the
mutual dependencies among disjoint pieces of a textured region. The second
segmentation algorithm is a relaxation-type algorithm that arises naturally
within the context of these noncausal MRF's. It is a simple, maximum
likelihood estimator. The algorithms can be used separately or together.‘<f"
The algorithms have the desirable properties: (i) the required computation
appears to be close to the minimum required for segmenting images modelled
by MRF's; (ii) the segmentation can operate in adaptive modes, estimating a
priori unknown fixed or spatially varying MRF parameters; (iii) the
segmentations are unusually accurate--- usually to within one or two pixels
in the experiments run. A contribution of the paper is that a start is
made in discussing and exploring that inherent structure of MRF's that must

be exploited in order to construct physically meaningful MRF models for

representing real textured images, and in order to devise segmentation

algorithms that are computationally efficient. -
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;d 1.0 History of the Textured Image Segmentation Problem

tﬁ | The use of Markovian Random Fields to model image textures, textured
region geometry, and textured region boundary, and then the application of
maximum-likelihood or Bayesian estimation methods for segmenting such images
has a growing history. Cooper, et. al. [l], have used white Gaussian fields
to represent texture, and unilateral (causal) Markov processes to represent
region boundaries. Image segmentation was realized as the maximization of the
conditional likelihood of a boundary given the data image. In [2], Cooper,
et al., used the same representation and developed an approach that
partitions an image into small square windows, does boundary estimation
simultaneously in all windows through the use of dynamic programming, then
seams the windows together using again dynamic programming. Again, using the
same representation, Schenker, et. al. [3), demonstrated the hierarchical
"ripple filter", a local relaxation-type algorithm to do maximum likelihood
image segmentation. Elliott and Scharf [4] were the first to develop a
dynamic programming algorithm for boundary estimation, and then Elliott,
et.al. [5] developed a dynamic programming algorithm for segmenting multi-
level texture. Here a white Gaussian field with different means (for the
different textured regions) was used to model texture, and a MRF was used to
model region geometry. This doubly-stochastic modelling for texture and

region geometry was also adopted by Therrien [6]. He used a white or a causal
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the image, and a binary field based on a 2D Markov chain introduced by Kaufman

and Woods [7] to model prior information about texture region connectivity.

e

The image segmentation algorithm he used was an iterative one where the
texture region association of a pixel (i, j) was based on the relative numbers

of pixels assigned to the 2 texture types in a small square about (i,j) and on

its texture conditional likelihood. Later, maximum a posteriori estimation
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(MAP) of an original image given the degraded observations through stochastic

relaxation was also adopted by the Gemans [8]. They viewed the image as a

pair of processes -- the intensity process and the line process. These were

modelled by MRF's (with a relatively small neighborhood) whose Gibbs potential

was assumed known. Image restoration was achieved through an annealing

schedule that forces samples from the posterior distribution towards the

minimal energy configuration (i.e. the maximum of the posterior distribution).
Finally, we mention threg lines of research, not because they deal with the

segmentation of MRF's, but rather because they use algorithms close in spirit

to those that we discuss. Chen and Pavlidis [9] presented a hierarchical

approach to textured image segmentation involving image data modelled by

noncausal 2-D Gaussian processes. No use was made of MRF's or their

properties. They expressed the segmentation problem as a sequence of tests of

hypotheses on a quadtree data base and within the framework of a split-and-

merge algorithm. Regions of arbitrary initial segmentation were tested for
uniformity. If they were not uniform they were subdivided into smaller
regions, or set aside if the appropriate statistics were below a given
threshold. Subject to cluster analysis, similar uniform regions were merged
as constituting a texture-type region. Updated estimates for the parameters

of each random field were obtained as the uniform regions became larger.

These were in turn used to clagsify some of the remaining unclassified small
regions. Rosenfeld and colleagues have developed 'relaxotion' aigovithms for
parallel processing. Though they do not do maximum likelihood estimation nor

do they use the image data in iterations following the initial segmentation,

nevertheless, they have shown that their approach involving "pseudo-likelihoods" cq:Etﬁ

v_“.‘ -

used in many important applications, e.g., see [10].Faugeras and Berthod [11} develx- N
S e AN
a relaxation-like algorithm but based on the extremization of a performance functignl=wisll
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Their application was object classification based on multi-gpectral data. Hinton, &;;;%}
et.al. [25], are developing elements of an approach to scene understanding based on:ﬁ;:;jz
networks, an energy performance functional , and a probabilistic relaxation Eiféf;j
optimization algorithm. Though the referenced papers do not deal with textured imaQ::i;s
by
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segmentation, there is a significant overlap in the kinds of equations that they and we

ultimately deal with.
The first published papers on maximum likelihood segmentation of textured

images when noncausal Gaussian MRF's are used for data modelling and another
MRF is used for texture-type region modelling are those of Cohen, et al. [12,
13, 14]. Hierarchical and parallel iterative (relaxation-type) segmentation

algorithms were introduced, and so was the use of these in combination.

1.1 Brief Overview of our Use of Windows, Our Approach to Textured Image

Segmentation, and the History of Markov Random Fields for Texture Modelling.

We model textured images on two levels, one unobserved level to describe
the geometry of the basic rezions within each of which the image has one type
of texture, and an observable level to describe the textured image data in
each region. Under this scenario for image generation, nature first generates

the texture-type regions, and then fills in each region with an image having

the appropriate texture. Two~dimensional MRF's are used as texture and region
models. The MRF models are a class of parametric models that have been

studied extensively by Besag [15] and Bartlett [16] as a generalization to

the Ising model. Gaussian MRF's have been extensively studied by Woods [17]
and Jain [18], among others. Woods has considered them for image filtering
[19]. They have been successfully used by Cross [20], and Kashyap and

[21]), among cthers, Lo model a variery of stationary texture fields such as

.
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Brodatz textures. Thenry kas beer presanted by bBesag [15], as well as by Kashvap and
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Chelappa [21] for estimating parameters to adapt the models to stationary

field data. Kashyap's and Chelappa's work [21] also included texture

7.
ALY

recognition for rectangular textured regions.

The segmentation problem consists of partitioning a textured image into

Y,
P

1N

regions, in each of which there is one of C possible texture types (texture
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classes). This means that a texture-type classification must be made for each
pixel. Since a connected single texture-type region will usually contain many
pixels, we consider a simplification that considerably reduces the required
computation. The simplification is to partition the image into small square
windows and to process each window under the assumption that it contains one
or at most two texture types. Then each window is processed as a separate
subimage, and the results combined in an appropriate way (see Section 4.5).
Hence, most of this paper is concerned with segmenting a small square window
of image into two regions, each of which comprises one of two image texture
types. Extension to three or more texture types in a window is immediate.

A precise brief statement of our segmentation approach is the following.
Nature partitions an NxN pixel window into two (or more) region~ denoted as
texture-type regions 0 and 1. Within region k, model k is used to generate
the data. The image data in region 0 is statistically independent of that in
region 1. Let sjj be a binary variable taking values 0 and 1, denoting
texture-type 0 and 1, respectively, and let S denote the N2 dimensional vectox
having components sij- Then the vector S specifies the partition of the NxN
pixel window into the texture-type 0 and texture-type 1 regions. Let yij
denote the picture function (i.e., image data) at pixel (i,j), and Y be the N2
component vector having components Yije Then Y is the vector of all picture

function values in the NxN pixel windew. If S is viewed as a constant but

sunknown vector, the likelihood of the data in the window is

p(Y,8) = p(Yg|0) p(¥;|1) (1)

Here, p(Y,S8) is the liklihood of Y given the partition S. Yk denotes the

picture function vector for texture-type region k, and p(Yklk) denotes the

likelihood of Yy given the probability model for image data in texture-type
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region k. Hence, the simplest texture segmentation problem is to determine
the partition S for which Eq.l is a maximum.

The second problem is that in which S is itself a random vector. That
is, nature partitions the window into texture-type regions in accordance with
some probabilistic process. Then the segmentation problem is the
determination of S8 for which the posterior likelihood

p(sly) (2)
is a maximum. Note, equivalent to maximizing (2) is finding the S that
maximizes (3) or (4)

2n p(Y,S) (3

2n p(S) + &n p(Y|S) (4)

1.2 Contribution of this Paper

The present paper is an in-depth treatment and extension of material
briefly introduced in {13,14]. 1t makes the following contributions. Certain
properties of MRF's need to be exploited in order to do physically meaningful
image data modelling that is also mathematically consistent. Some of these
questions are raised and one solution is presented. Parallel iterative and
hierarchical algorithms are presented for maximum likelihood segmentation of
textured images, Our iterative algorithm will generally require much less
computation than will an annealing algorithm, and will also work with
noustationary wmodels and data, whereas the annealing algerithm usually will
not. Again, there are properties of the MRF's that can be exploited, this
time to substantially reduce the amount of required computation. A divide-
and-conquer approach is taken in our hierarchical segmentation algorithm that
reduces the number of multiplication-equivalent operations to 42,257 for a
64x64 pixel window. This is to be compared with ten to fifteen times that

number of multiplication-equivalent operations for a direct hierarchical
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approach. The simplest iterative algorithm is mathematically correct, but

lacks a certain physical meaningfulness. This problem is addressed and one

solution is briefly proposed. A number of experiments are run with real

data. This turns out to be important, as the segmentation of real data is

much more difficult than is that of artificially generated data---- especially
since real image texture data is generally nonstationary. One approach to
parameter-adaptive segmentation is briefly discussed and illustrated. This

estimation of unknown model parameters during the segmentation process is

required in practice. Our algorithms appear to be robust, and effective even

when the models do not represent the data well.

2.0 Markov Random Fields (MRF)

We use the auto-normal MRF (i.e., Gaussian process) as the texture data
model, and the auto-binary process for modelling region geometry for an image
window that contains at most two different texture types. Let r=(i,]) index
pixel location where i,j specify pixel row and column location and satisfy
1 <i,j £ N. Let x, denote a random field, with x, the field at pixel r, X

a vector specifying the field over an entire N x N window and having

components Xr, and X, the field everywhere but at pixel r. By {x,} a MRF we

mean that
}
p(xrlxr) = p(xr|xv,vanp)

Here, D, denotes a neighbor set, and p(x.|X;) denotes the conditional

likelihood of x, given X,.

The nature of D, is illustrated in Fig. l. As indicated in Fig. 1, a lst

order MRF is one for which the neighbor set consists of the four pixels

constituting the north, south, east, and west neighbors of the center pixel. A
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2nd order MRF is that for which the neighbor set is the first layer of eight
pixels surrounding the center pixel, i.e., all pixels marked 1 or 2. A 3rd

order neighbor set consists of all pixels marked 1, 2 or 3, etc. In general,

Dp = {v =(2,m) such that ||r-v||2 < N, and vér}

P

Where P is the order of the process, and N_ is an increasing function of P.

P
NP takes the values 1,2,4,5,8,9 for P=1,2,,.,6 respectively.

2.1 The Gaussian MRF Texture Model

The observed texture field (i.e., image data field) is denoted yij or
just y., t = (i,j). The conditional likelihood for the kth texture class is

Gaussian, and is given by

ply, | Yr , class k)=

= 20020101 % exp(~(1/2020GN) [y (k) = § By (ygmuN1?} (5
veD
P

For {Yr} stationary, By-y must satisfy certain restrictions. However,
nonstationary fields are also of interest in this paper. For a stationary
field, the joint probability density function (pdf) for the image in texture

region k given that the field is 0 outside this region is shown by Besag [15] to be

p(Y|class k) = [2m02 (k] 2|B(k) | 1/2exp - [(¥~U(K)}E B [¥-U(K)]/20%(K)}  (Sa)

where U(k) = p(k)(1,1,..,1)%, and Y is an (M x 1) column vector whose elements
are the picture function y, at the pixels in the M pixel region. B(k) is a

symmetric positive definite (MxM) matrix whose diagonal elements are

unity, and whose off-diagonal element is equal to -By-y, where B,-y indicates
the strength of the spatial interaction between the MRF at points r and v.

Br-v is zero if points r and v are not neighbors.
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2.2 The Binary MRF Spatial Region Model

We use the noncausal binary process to model region geometry. It has
been used by others to model image textures (Cross [20] ), For example, if one
texture-type region consists of small elongated blobs and another consists of
large regions, a binary MRF model can be designed to generate such patterns.
Or if two texture-type regions are large with boundaries of low curvature, a
binary model can be designed to generate these patterns. For the local 0,1
pattern shown in Fig. 2, if nature's goal was to generate regions with long
smooth boundaries she would generate an s value of O with higher probability
than an s value of 1 at location x. Let S denote the region-field modelled by
the noncausal auto-binary Markov field that describes the geometry of the
regions in the image. For an N x N image, S has N2 components {sij}v each s_
taking the value O or 1 and describing the allocation of pixel r = (i,j) to

either class I or class II. The conditional probability takes the form
p(se|Se) = exp (sp Tp)/[1 + exp(Ty)] (6)

where Tris given by

Ty = a + ) bpysy (N
veDP

For {sij} stationary, brv = br-v for 211 r = {(1,3) and v = (m,n).

3.0 The Segmentation Problem

Overview

The window segmentation problem of concern in this paper is that a window may
contain two* texture-type regions, each from one of C classes, and the

window is to be partitioned into two regions, each consisting of one texture

* Three or more are possible, but the required computation is more extensive.
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type. We use maximum likelihood estimation for this purpose. The two
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difficulties that arise in the segmentation problem are: first, likelihoods

N 4

must be computed for texture regions of irregular shape; second, likelihoods

A-,.i
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must be computed for many of the possible partitionings of the window. The

[t
PR

8 challenge of the first problem is that there is no obvious simple way of
computing the joint likelihood of a noncausal MRF over an irregular region.
The challenge of the second problem is to be able to compute the picture
function likelihoods for many different partitions of a window without having
to do a horrendous amount of computation.

This paper presents simple practical solutions to both problems. The
first algorithm we present is a hierarchical pyramidal-type algorithm, whereas
the second one is an iterative relaxation-type algorithm. Both algorithms can

handle textured images modelled by either stationary or nonstationary MRF

texture models.
The reason for partitioning the image into windows is threefold: 1) it
permits parallel processing, since windows can be segmented simultaneously
using appropriate hardware architectures, and the results then seamed
together; 2) by having one or at most two texture classes in a window, the
processing is relatively simple; 3) if the windows are small, the texture
model within a wiadow can be treated as being spatially statiomary, i.e.,
having parameters that are constant for the entire window (and satisfying certain

restrictions). This is especially convenient if, as is usually the case, the texture

model parameters are a priori partially unknown or are spatially slowly varying and

must be estimated during the segmentation process.
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3.1 The Hierarchical Algorithm.

In the hierarchical algorithm, we often refer to the two texture-type
regions as object and background regions. The reason for this is partly
historical and stems from the fact that a goal is often to isolate a specific
object without caring about the interpretation of the surrounding region.
Examples are an ' image of a kidney in a CATSCAN, a vehicle in an infrared
image, a tree in a visible light image, etc. Such an object often appears in
an image as a convex textured blob. The intersection of a window with such a
region will be connected. Hence, for the hierarchical algorithm we have
imposed the constraint that the estimate of one of the textured regions in a
window, the object region, be connected. Our algorithm can easily be modified
to require that the estimated object and background regions both be connected
regions, or to not require connectivity in either type of region estimate.

The segmentation sought is that which maximizes the likelihood of the
data. In each window the segmentation algorithm is hierarchical and uses a
quadtree-like data structure. The window is divided into four quadrants and
the best segmentation, i.e, grouping of these four blocks, is obtained. Then
each of the four blocks is itself partitioned into four, and the process is
repeated until the block size is such that each block consists of one pixel.
At each s3tage of the hievarchy, the object connectivity constraint is met.

Each stage of the algorithm involves working with blocks of a certain

w

ize ard congists ot two steps.

Step 1. "Region growing'.

At the end of the nth stage, the window has been segmented into two sets, r{;{gxq
SON
o N u e
. . . . . . SRS
one of which is referred to as the object region and is constrained to be ‘\}ikisa
RS A
AN
connected. For the (n+l)st stage, we shrink and expand the object by N,

partitioning each block in the neighborhood of the estimated boundary into

four and obtain the best grouping of the four resulting quadrants. There will
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be 16 partitions to consider. Since under the auto-normal model assumption
neighboring blocks are spatially interacting among each other (i.e., partially
correlated along their common boundaries) the likelihood of each partition is

conditioned on the segmentation of the surrounding blocks determined at the

nth stage. This use of stochastic dependence is crucial to achieving good

=g

segmentation. This is especially true when the blocks are of small sizes,

AN
J‘I-“v

since a small block may contain only a portion of a cycle of texture data, and

consequently, texture-type classification cannot be based on the data content
of the small window alone. Rather, use must be made of the continuity of the
texture data and its first or higher derivatives at the boundary between the
small window and the surrounding image region of the same texture type. Our
maximum likelihood segmentation algorithms automatically include information
roughly equivalent to this. All object blocks constituting the boundary of
the object as well as all background blocks neighboring the boundary blocks

are processed simultaneously.

Step 2. '"Object connectivity"

We check for the single-object-region connectivity constraint. If there

is more than one object-region, we merge them into one. The merging is done

by computing the likelihoods of all possible configurations that will result

in a single connected object-region. We have adopted the notion that no pair

of ragions be merged unless they have at least one common first-neighbor

block. By first neighbor blocks we mean background blocks that are adjacent

to the boundary of the object. We repeat step 1 and step 2 at each stage of

A raanes

decreasing block size until each block consists of one pixel.

Y
.

'-
LS

. .
PR TS

The following example will illustrate the algorithm steps more clearly.

20

Suppose at the end of the 2nd stage we obtained the segmentation shown in

A

.
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Figure 3a. Note that the object is not connected, as it consists of two
disjoint regions R1, R2. Following step 2 there will be one of two possible

results., Either block B is reallocated to the object class, figure 3b, or Rl or

A AP

R2 are reallocated to the background class, figure 3c,d, whichever is more likely. .
This results in onewépnnected object region R. We expand and shrink region R

by partitioning the boundary and first-neighbor blocks as in step 1.

3.2.1 Computational Considerations for Stationary Gaussian MRF Textures

The hierarchical texture segmentation algorithm involves recognizing the
texture region association of large blocks of image data in the early stages
and small blocks of image data in the last stages of image segmentation. For
the former, it is necessary to compute the likelihoods of large blocks of the
image. For the latter, it is necessary to compute the likelihoods of small

blocks of data conditioned on their surrounds. These are normally

computationally prohibitive tasks. In this section we will show how to
practically compute the likelihoods of large blocks and the conditional
likelihoods of small blocks of data conditioned on their surrounds.

The free-boundary condition [15] is assumed. The meaning of this

is that if pixel (i,j) is in Lhe region for which the joini likelibhood of all

picture function values is to be computed and if pixel (&,m) is not in the

region but is in the conditioning neighbor set given in (5), the picture

function yg n at (%,m) is not to be used in (5). (Note, (2,m) is in the :f~ 5
IORCR A S,

ses s . . . . . . SN
conditioning neighbor set if (2,m) € Dp.) Not including Y,m is equivalent r;:;a:;\w
P. -‘. “b_-.-’.'l

A

to setting it to 0 in (5). The use of this free boundary condition does not

give consistent probabilities for all subsets within the region. We comment

PN

.:_".:\. T
on this briefly in Section 7.0. For an M x N rectangular lattice, the joint E:w:e\s:c
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density function is given in (8). For simplicity, we assume that ¥ (Y=Y-U(k))
represents the picture function minus its mean. Y is a vector with components

;ij=yij-u(k) that are arranged in raster scan order.

p(Y) = (2102)~(MN) /2| B|% exp{-Yt B Y/202} (8)

As M,N +» =, IB], the determinant of B, is asymptotically equal to the
determinant resulting from the use of a torus structure [21]. (This equality is in

the sense that the difference of the two determinants divided by either one of them
goes to 0.) This occurs because as M,N + ®, the contribution to p(Y) of
the yij near the window border becomes unimportant; hence the choice of

boundary condition becomes unimportant. For the torus structure, IBI takes

the simple form [21]

M-1 N-1 2 2n
|B|= n nl1-2 Z B!. cos[— 1+ =— j]] (8a)
. . m M N
i=0 j=0 -zil,miz
Because of the raster scan, the MN x MN positive definite symmetric matrix B

can be decomposed as

By By By 0 ... 0‘T
B} By By B
Bg B% By 32
B = . (8b)

. B3

B,

t t

0 0 . . . 33 Bz Bl
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By, By and B3 are (M X M) matrices. The matrix B] represents the spatial
interaction of a row (column) with itself, while By is the spatial interaction
matrix between two adjacent rows (colummns), and B3 is the spatial interaction
matrix between two rows (columns) separated by one intervening row (column).

Then for a 2nd order model the quadratic in (8) is expanded as

T N ST §
YtBY = ¥y, - 28 Yi4Y - 28 Yia¥q 44
1=1 =1 ij 11 1=1 =1 i371+1,4 12 1=1 §=1 1371,3+1
)
M-1 N-1 Mil 1§ _
- 28 Yy - 28 YiaYi41 3o
21 1=1 j=1 1371+1,3+1 22 1=1 §=2 1§7i+1,j-1

We proceed now to show how to recursively compute the conditional and
unconditional likelihood functions associated with the 16 partitions of a
boundary or first neighbor block.
Result 1

Suppose an N X N data block Y is divided into 4 quadrants. Let Yj be the
data vector in quadrant j (j = 1,2,3,4) where these quadrants are NW
(Northwest), NE, SW and SE, respectively. Then the N2xN2 B matrix associated

with the data biock Y can be partitioned into

r;l B12 B13 31:]

B = Biz By By3 By
t t
313 323 B3 B3y
t t t

Blq Ba B B4

l. . 34 .J
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where Bj(j = 1,2,3,4) is the interaction matrix associated with Y; and is
given in (8b) for M = N = N/2. B;j; is the interaction matrix between

qQuadrants i and j. Note that the Bj are the same for all quadrants, and that

Bjs = B34 and B13 = B4. The joint likelihood of the N X N data block Y can

then be expressed as

2 4 —
p(1) = 1) N /2|81 2 expi-(1/20H)[ T BT, +2 | TB,.V.]} (10
j=1 J 3] i,j 113
1<i<j<4

Proof follows from the preceding decomposition of B.

Let Iy(j ) be the within-block interaction term for data block Yj.
Iy(j) = §§Bj§j' Let Ig(i, j ) be the between-block interaction term for

blocks Yj and Yj. Ip(i,j) = QEBijij = §§B§j§i' Hence

4
fa p(Y) = (1/2)2n|B| - (v2/2)an 2702 - 1/202[ ) I,(1) +2 ) I,(1,9)]
i=1 1,3
1<i<j<4
The next result gives the form of the likelihood of a block X conditioned on
the surrounding block(s) Y.

Result 2

The conditicnal likelihocd of a data block X given surrounding data

blocks Y and the free boundary condition outside blocks X and Y is

B, [% exp{-(1/20%) (X B,% + 2% B,.¥ + ¥ BE 8218 %]} (11)

N /zl
X X XY XY X XY

p(X|V) = (2n?)",

where Nx is the number of pixels in block X.

Proof: See Appendix A
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) can fe  compy fed exactly. Tn our experiments we have usedf

2np(X|Y) = (9)n|B,|-(N,/2)2n(2m02) - (1/202) [T (X)+215(X,1)]

ith 300d resylts.
From Result 2, it follows that the conditional likelihoods involved in the
decision mechanism are explicitly expressed as a summation of appropriate

within-block and between-block interactions. These terms can be recursively

computed from one resolution to the next. For example, assume that at stage n
the window has M2 blocks. Let Iﬁ(i,j;n) be the within-block interaction for
the (i,j) block at resolution n under texture class c. Let I¢g(i,j,f,m;n) be
the between-block interaction between block (i,j) and block (£,m) at
resolution n under texture class c. (Note that increasing n means smaller
blocks, with the largest n specifying a block size of one pixel). Then the

within-block interactions at resolution (n - 1) are computed from I;(., .3 n) and

Iﬁ(.,.,.,.;n) using a very simple ring-structure shown in figure 4. Here the

Iy(.,.3n) for each block at resolution n is represented by a node, whereas the
Ig(.,+y.,.3n) between a pair of blocks is represented by either a dashed or

s0lid branch. We assume that the sets Iy(.,.;n) and Ig(.,.,.,.;n) for

e the blocks at resolution n have been computed and stored. We compute the sets
&?35 TyCeyeysn-1) and Ig(eyey.y.,30=-1)by summing up the branches of the

E:Ej appropriate golid rings, and the branches of the appropriate dashed rings

ﬁ&: given at resolution n (see fig. 4). Note that the between-block interaction
Eﬁs between 2 non-neighboring blocks is zero. Here the neighborhoood set is that
PS:S which is defined by the order of the process. For a Sth-order process the
E!} only nonzero interaction blocks that a block (i,j) of size (2 x 2) or higher
;{E has is the between block interaction set {Ig(i,j,i+k,j+t) , -1 <k, 2 <1, and
i!.
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(k,2) # (0,0)}. With special-purpose hardware one can compute all the
Ia(.,.;n-l) and Ig(.,.,.,.;n-l) simultaneously using (ICy(.,.;n),
I;(.,.,.,.;n-l)). Because of this recursion, the hierarchical algorithm is

computationally attractive.

3.2.2 Amount of Computation Required for Hierarchical Segmentation Using

Stationary Gaussian MRF Textures

We can estimate the amount of required computation for a 64 x 64 window
and 2nd-order model as follows. At the 2 x 2 block level, 14 multiplications
and 9 additions are required for computing the within-block interaction term
for each block, and there are (32)2 such blocks. Hence a total of (32)2 x 14
multiplications and (32)2 x 9 additions are required. For the between-block
interaction of a block with any one of its neighbors, 7 multiplications and 3
additions are needed for the block. The total number of multiplications for
the between-block interactions is 7[(2x29x30+2x29x29)+4x30+4x2x29+29+4x3] =
7x3786 multiplications and 3[(2x29x30+2x29x29)+4x30+4x2x29+4x3] = 3x3786
additions. Hence, at the (2 x 2) block resolution, (32)2x14+7x3786 = 40,838
and 3x3786 = 20,574 additions are used. For resolution (n-2), each block is
(4 x 4). Using the ring structure, 9 additions and one multiplication are
needed for the within-block interactioa for each block, hence a total of (16)2
multiplications and (16)2 x 9 additions. For the between-block interaction
between two (4 x 4) blocks, we need 1 multiplication and 6 additions, hence a
total of [(2x13x14+2x13x13)+(14x4+2x13x4)+4x3)] = 882 multiplications and 6x882
additions, etc....

Total number of multiplications for all the Iw(.,.;.) is 14,677.

Total number of additions for all the I, (.,.;.)is 9556.

Total number of multiplications for all the L (eyepeye3s) is 27,580.

Total number of additions for all the Ig(.,.,.,.3.) is 27,042,
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Without this ring structure, the total number of multiplications for Iw(.,.;.) is
107,902 multiplications and for IB(.,.,.,.;.) is 44,020 -- hence, a total of
151,922 multiplications compared to 42,257 multiplications. Furthermore, if the
"within" and the "between" block structures that we developed here are not used,
but rather p(Y,S) is computed from scratch for each possible partition in the
hierarchical algorithm, then the number of multiplication equivalent operations
for segmentation is at least fifteen to twenty times the 42,257 required for our

algorithm.

3.2.3 Amount of Required Computation with a Parallel Architecture

The bulk of the computation in 3.2.2 could be carried in parallel with a
simple special purpose architecture. Here the overall structure is such that
each block at a given resolution (say (n~1)st) is assigned nine processors. The
first one, called the within-processor, computes the Iy(i,j;n-1) term for the
(i,3) block at the (n-1)st resolution. It has as inputs the elements of the
appropriate solid ring at resolution n. An example is shown in Fig 4. The
remaining eight processors are called the between-processors. Since each block
of size (2x2) or higher has eight neighbors as shown in Fig 5 for a MRF of 2nd

order through fifth order, each between processor has the task of computing an

Ig(i,jy.,.3n-1) term for the interaction between block {i,j) and one of its 8
neighbors. Each between-processor has as inputs the elements that constitute the
appropriate dashed ring at resolurion n. Again an example iz shown 1n Fig. 4.

At the highest resolution (i.e. at 2x2 block level) the total number of

multiplications, and additions is 14 and 9, respectively, for the within-processor,.-
and a maximum of 4 for the between processor for a 2nd order MRF (for a 5th order
that number will be 12). For lower resolutions only 1 multiplication and 9

additions are needed for Iy(.,.j;.). A maximum of 1 multiplication and 4 s
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additions are required for Ig(.,.,.,.3.). The total computation for
{1y(.,.5.)} is 14 + log (N-1) multiplications and 9 logN additions; and a
maximum of 4+log(N-1) multiplications and 4logN additions for IB(.,.,.,.;,). An

upper bound for the required computation is then 14+log(N-1) multiplications

and 9logN additions. Note that ololo
except at the 2x2 block level, the
o{X|o
processors consist mainly of adders
o] o} o
and are hence structurally simple!
Figure 5
3.3.0 Pseudo-Likelihood ' F ’
Let Y;;j denote the vector Y less cxlB Fa Blo |8
the component yije Consider Blo kR o kB Ja
———
YijlYij (i.e., yjj conditioned on its afB fo {8 Jo {8
C— __ ]
surround), and suppose the window is BJ(} 8 {a I8 {a
:} just one texture type. For
- simplicity, assume the texture model Figure 6

s
2

.I
-

LY

is a lst order Gaussian MRF. If the yij are limited to one code, i,e., the

pixels marked @ or those marked B in Fig. 6, the conditioned variables yijl¥ij
will be statistically independent. Hence,
n p(y,,lY,)) (12)
13074
(1,9 4

€ one code

is the joint conditional likelihood of picture function values for pixels in one

code. Equivalently, (12) is the joint likelihood of the statistically
independent residuals in the prediction of the yij in a code given the
surrounding picture function values. By the pseudo-likelihood of the picture
function in a region, we mean the product of the conditional likelihoods of the
picture function at all points in the region, e.g., (12a). Note that the pseudo-

likelihood is not a true likelihood; rather it is the product of joint
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conditional likelihoods, each joint conditional likelihood being for one code in

the region.

I p(yislYis) (12a)
(i,7) 13! ij
€ region
Let the window be NXN. Denote by
p(yijl¥i;,®) (13)

the conditional p.d.f. of yij given its surround when the p.d.f. parameters are
given by the vector ¢. Then it is easy to show that for the field yij having
parameter vector ¢t with Qt ¥ o,

P{gim[ @
Noo (i,7)

p(yijlY13’°c)/P(y1j|Yij 2)] > 1} =1 (14)

That is, the ratio of the conditional likelihoods of the picture function values
in a code becomes greater than 1 for almost all windows as N + . Hence, this

conditional likelihood raiio is an effective texture-type classifier.Furthermore,
it is trivial to show (Appendix B) (also [21]) that (14) holds if all pixels in a
window are used, and better performance is to be expected then.

We suggest using

this pseudo-likelihood function as a performance functional for segmenting MRF's

when the pseudo-likelihood estimated parameters for the Gaussian MRF are those

for a nonstatiomary precess.

3.3.1 On the Use of the Pseudo-Likelihood Function and Maximum Pseudo-Likehood

Parameter Estimates

Though we successfully perform adaptive maximum-likelihood textured-image

segmentation, two problems are encountered. The first is the computation of

determinants such as those in (5a) for irregularly shaped regions. Approximations

are necessary here. 1In our hierarchical algorithm we use (8a) for computing

IB|. The approximation is satisfactory here because the algorithm considers only -
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rectangular regions, square regions, or a combination of both as shown in Fig. 7.

For the latter case, we wuse the

approximation IBI s |B IIB |. For T
r ] B -
. . r ] . g
an arbitrary shaped region the { Bs Figure 7 ;:’ :
S -
approximation in (8a) may not be 1 Pl

appropriate. The second more serious problem is that computation-intensive
maximum likelihood parameter estimation is necessary if the MRF models used are

constrained to be those for stationary processes. Using the asymptotic

expression for the likelihood (5a), good parameter estimates can be obtained for

a stationary Gaussian MRF model even when the data is somewhat nonstationary.

However, because of the large amount of required computation, online adaptive
segmentation may not be possible., On the other hand, the maximum pseudo-

like lihood parameter estimates for the stationary MRF are asymptotically

consistent, efficient, and computationally simple [21] --- even for highly
irregularly shaped regions. (However there is no guarantee that the estimates
based on finite data sets will be those for a stationary MRF, nor even those fr.
a Gaussian MRF, i.e., the estimated parameters may result in a determinant in
(5a) that is not positive semi-definite.) The pseudo-likelihood function can
also be used to estimate parameters for nonstationary Gaussian MRF's, or for
MRF's that are not Gaussian. Fortunately, we have found generally that these
preudo-likelihood estimates of the parameters in (5) can be used in a pseudo-
Tikslihcod perfcimance fuanctiomal (Sec. 3.3.0, 6.0) that is effective for both
texture recognition and hierarchical textured image segmentation. Hence, when
the pseudo-likelihood estimates for the Bij result in positive-semidefinite B's
for (5a), our hierarchical maximum-likelihood segmentation can be used, and when
this estimated B is not positive-semidefinite, maximum pseudo-likelihood

segmentation can be used. One other option for hierarchical segmentation is the

"Rd
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use of the likelihood performance functional --- but neglecting the determinant
of B in (5a) when the estimated B is not positive-semidefinite. Experiments

using these three performance functionals are described in Section 6.0.

3.3.2 Amount of Computation Required for Hierarchical Segmentation When Using

Nonstationary MRF Textures

Similar to the likelihood function of a Gaussian MRF, the quadratic of the
pseudo—likelihood function can be expressed as sums of data covariances. The

neighborhood structure is larger, however. This can be seen by considering a
1st order Gaussian MRF. The quadratic in the conditional function p(yijlYij),

given by
ij - 811(Fi-1,5 * ¥i*1,) - 812(¥i, -1 * ¥i,j+10]1%/26%,

involves covariances (interaction terms) encountered in a 3rd order MRF process

.
. > Iy
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(e.g. ;E-l,j ;}+1,j’ ;}-1,j §i,j+1’ etc.) The pseudo-likelihood function -
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includes covariances in the Bp], B2, B3], B3 directions which weren't present :;:{z{<

NEALAES
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in the likelihood function. The quadratic function in the pseudo-likelihood for VU
a lst order MRF can be shown to be TTE

oo izj ?"{j tenn 123 Yii¥i+l,j * €12 L Fij74,i+1 * c21 L Fijvirl, jo1

*e22 ] Vij¥isl,j-1 * €31 L Fijvie2,j * €32 I Vij¥i,;e2
i,3 i,3 1,j

+ correction,

Hence, a similar ring-structure is appropriate to evaluate the {Iy(.,.;.)} and
{1g(.y.yey.3.)} sets. The amount of computation is higher than that for the
likelihood function, as a larger number of covariance functions are involved, and
there is a correction term which is nonexistent when the likelihood function is

used.
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3.3.4 Generality of the ring-structure

The ring structure is fundamental to MRF's in genral, not just the Gaussian.

For the class of auto-models [15], the most general form p(Y) can take in order

to give a valid probability sturcture that represents a MRF is given by

p(Y) = h exp Q(Y) (15)

LIRS L .
g """1:,;: ;

where h, the partition function, is a normalizing constant in order that p(Y)

-
e
.
»
.

have unit area. Q(Y) is known as a Gibbs potential and is shown [15] to have the

form
QY) =7 yp G (yg) + ) 6o y(y,0v,) YL, (16)
r r,v
This has the same form as the quadratic for the Gaussian MRF and therefore
the compuation involved in the hierarchical segmentation can be carried on

through a similar ring-structure. This fact makes the hierarchical segmentation

computationally attractive and highly parallelizable for any random field for

which the Gibbs potential has been determined.

4.1. Segmentation Using Auto-Binary Fields for Region Geometry and a Parallel
Iterative Relaxation-Type Algorithm

In Section 3, the segmentation of an image into regions each of which

contains a single Markovian texture field was considered. The hierarchical

4

4
.

roags

algorithm was based solely on models fcor the obseivable texture fields, and did

A7

I
I

e B
St

not incorporate any information about image geometry (i.e., shapes of the

regions, their sizes, etc.). Because of the lack of information about image-

4
| .

geometry, boundaries between segmented regions in noisy images are often jagged

.
ot

a b
.
uf

and must be smoothed. A noncausal auto-binary field could be used towards that

end. The auto-binary field is used to model region geometry or boundary shape.
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For the case of an object that is assumed to have a boundary that is smooth and
slowly curving, an appropriate field will be such that the conditional
probability of a point $ij given its neighbors will be low for the case where a
sharp increase in the boundary slope would result. Alternatively, for a region
with high curvatures, we can choose the parameters for the auto-binary field so
as to reflect locally this property. A parallel, iterative relaxation type
algorithm arises naturally here, and is implemented to maximize the conditional
likelihood p(S|Y), or equivalently, the joint likelihood p(Y|s)p(s). A
sequential algorithm guarant®ed to find a local maximum is as follows. Suppose
at the nth iteration, the estimated binary field is S® with value sgjat pixel
(i,j). Note that sij takes the values (0,1) corresponding to texture data field
classes ¢ = 1,2 respectively. The different steps are:

1. Choose any pixel (i,j).

2. Keep sgj as is or change it, whichever maximizes p(S,Y). This provides
a new estimate SP*1l, Hence
p(Y|Sij, sij = k) P(Sij, sij = k), k = 0, 1,must be computed.
To carry out these computations we use
p(Sij,sij ) = P(Sijlsij) p(sij) .
Since p(Sij) is not a function of sij » only the conditional likelihoods
p(sij = kisij) y £ = 0, 1, must be computed. These are given in (6) and
are simple to compute.
3. For the other computation, use
p(Y'Sij,sij = k) =
P(YijlYij’ Sijr8ij = k) - P(Yijisij’sij = k), k = 0,1,
Since the second factor is not a function of sjj , all that need be computed

is the first factor for k = 0,1.
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4.  Hence, choose 52;1 =1 or s?;l = 0 depending on whether the ratio (17) is

greater than or less than 1.

1 (17)

n+l n n+ n
P(YijlYij;Sij =1, Sij) P(sij = llsij)/

+1 +1
p(yij|¥ijrsij =0, Sip p(sfy = 0[s}y)

If some of the yg p in the neighborhood system of yjj are missing in

Eq. (17), they are set equal to O.

To carry out the next iteration, choose a new pixel (i',j') and repeat.

The parallel version of the above algorithm is based on dividing the entire
data window into different subsets called codes. For example, for a lst order
auto-binary model the image data could be partitioned into two sets or codes as
shown in Figure 6. For any specific pixel a, the conditional mean of the image
function at that pixel a given the image at all other pixels will only depend on
the 4 surrounding B pixels and not on any a pixels. Hence the algorithm
described above could be applied to all the a pixels simultaneously. The next
iteration would then involve working with all the B pixels. This algorithm will

converge with fewer passes through the image than will the first algorithm

described.

Note that the joint likelihood function is a multimodal function of S. The
iterative algorithm is guaranreed to find a local maximum of the joint likelihood
function in a finite number of iterations. If tﬁe binary field is used within a
window as a smoother to the boundary estimated by the hierarchical algorithm,
then only pixels adjacent to the hypothesized boundary at that time need be
tested, rather than pixels interior to the hypothesized regions. In this sense,

the algorithm would be related to the Ripple Filter introduced by Cooper, et al.

(1,3]. o
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4.2 Proof that the Algorithm Converges

At the end of each iteration the joint likelihood p(S,Y) has increased or
remained unchanged. For an N x N window, the joint likelihood, as a function of
S, can take at most ZNZ values. Because of this and the fact that the algorithm
is sure that S0*1 differs from S® only if the change strictly increases the value
of the joint likelihoood function, it follows that the algorithm is guaranteed to

find a local maximum of the joint likelihood function in a finite number of

iterations.

4.3 Example of the Form of the Classification Computation

To illustrate explicitly the computations made during each iteration of the

algorithm, suppose p(yij]ygm in region k) is

NuGo + T B Iy, - ut0], o)
ver

with r = (i,j), v = (2,m).
Then the pixel texture-type classification function in its simplest form is to -

choose s,m*1l = 1 or 0 at the n+l st iteration in accordance with:

veD
““p

’
s

fy

+ ma(0) + [1/202(0)] Ly, - w(0) - ] 80y, - w012 -

veD
p

+ 3 + E bl"vsx\} (18)
€

veD
p

> 0, then s:+1 = 1; else, s:+l = 0.

(This can be expressed more compactly by using matrix notation.)
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4.4 A Modified Relaxation-Type Algorithm for Close-to-Optimum Segmentation

The algorithm in Section 4.1 generally converges to a local maximum of

p(Y,S). Segmentation errors take the form of classification errors in the

vicinity of the true boundary and/or the occurence of one or more

incorrectly classified sizeable regions. Let gij denote the value of $ij
produced by the segmentation algorithm. gij takes values of 1 and 0 in
accordance with (18). It is usually the case that for many of the pixels (i,j)

for which ;ij is incorrect, the likelincod ratio in (17)is close to 1.

This suggests changing the values of all ;ij for which the likelihood ratio is

close to 1, and using the
rerunning the algorithm.

In almost all experiments

resulting segmentation as an initial segmentation for
The algorithm will converge to some new segmentation S.

that we have run, S is closer to the true segmentation

than is S. The procedure can be repeated any number of times. It is possible

for one of these perturbations to result in convergence to a less accurate

segmentation. Consequently, it is desirable to use some measure of segmentation

accuracy to determine when to accept a limit partition. The modified algorithm

is as follows.

1. After convergence, run the following check at each pixel (i,j).
l-e<Rij<l+e (19) : E:ftéti'
(where Rjj is the ratio in (17)). {ggﬁ’j
L :"l:"‘-.
2. 1f Rij lies between the indicated bounds, change sij’ otherwise keep it
as it is.
3. After making all such changes throughout the image, use the resulting

segmentation to run the parallel iterative algorithm until it converges

again.
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~
4., At each convergence S, compute the pseudo likelihood
n N

n p(yijlY¥ij»Sij)p(si;]sij).
i,]
(See Section 3.3.0 for the significance of this performance functional.)
Repeat the algorithm until there is little change in a few successive pseudo-
likelihoods. Keep that segmentation for which the pseudo-likelihood is a
maximum. That segmentation is our estimate of the true segmentation. The
reason the perturbation algorithm is so effective is that the segmentation
resulting from the first convergent running of the algorithm is usually
fairly good.

Two changes in the preceding algorithm could be considered. The first is
to let € decrease each time a new cycle is begun. The other is to not change
the classification of all sij satisfying (19), but rather to change it with
some probability, perhaps 0.5. This makes the algorithm more analogous to
that used in other applications, and to the annealing methods explored

recently, and earlier.

4.5 The Relaxation Algorithm Used for Seaming

If holding computation to an absolute minimum is not necessary, a simple
convenient seaming procedure is to seam two (or four) adjacent windows by running
the iterative parallel algorithm in the union of these winduws. Since the

algorithm begins with a close- to-maximum-likelihood segmentation, it goes through

only a few iterations in order to converge. If the two (or four) windows contain
the same two texture types, the hidden region modelling field used will be
binary. If three texture types are involved, the region modelling field should

be ternary. In a typical image such as Fig. 15¢, if windows of modest size are

used, the great majority contain at most two texture types; a small number of

windows contain three texture types.
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4.6 Segmentation of Images of Manufactured Objects

Smooth dull surfaces such as those of many manufactured objects result in
picture functions that are spatially slowly varying and are well approximated
over much of their extents by low degree polynomial functions. Such images are
easily segmented using the adaptive hierarchical or iterative relaxation-type
algorithms. One solution [23 ] is an extension of the solution to the problem of the
segmentation of an image consisting of two or more regions of constant but
unknown image intensity plus white Gaussian noise. See, e.g., Figs. l4a,b and the
associated discussion in Section 6.0. In extending that solution, instead of the
mean value of the picture function in region k being some a priori unknown
constant u(k), it might be a linear function taking value vo(k) + y1(k)i + ya(k)j
at pixel (i,j), where Yg(k), v1(k), v2(k) are a priori unknown constants. Or

the mean value function might be a quadric function taking the value

¢

Yolk) + Y1(k)i + ¥o(k)j + v3(k)ij + Yg(k)iz + Y5(k)j2 at pixel (i,j). Hence,

r l'l

IR

when using the adaptive hierarchical segmenter, the Yz(k)'s could be first

estimated using small image blocks and unsupervised learning. These estimates

are used to start the hierarchical segmenter, which would adapt further during
the segmentation procedure. Maximum likelihood or Bayesian parameter estimation
is used during this stage. Adaptation car also be done when using the iterative

segmenter.

5.0 Adaptation

An algorithm for segmenting textured images will be of no value unless it
has the capability to estimate image model parameters during the segmentation
process. This assertion is based on the observation that model parameters for a
texture type will generally vary greatly from one image to another. The source

of this parameter variability is variation in lighting, scale, and simply
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variability within a broad class such as tree foliage, grass, earth, roads, etc.

£ v 4 1 s

(Within a single image, there generally is only slow spatial variation in the MRF

parameters for a single texture type.) Consequently, either no a priori

information is assumed concerning texture-type model parameters, or a priori
distributions are assumed for these parameters, and these distributions are used
in Bayesian-like parameter estimation during the segmentation process. In many
instances the approximation that model parameters are constant over a texture-
type region 1s satisfactory. In other instances, slow spatial variation must be
assumed for model parameters. We briefly comment on how the first situation can
be handled using our segmenters. An appropriate approach for the latter
situation is slightly more complicated and involves modelling the spatial
parameter variation for a texture-type model by an MRF. Practical incorporation
of adaptation into segmentation algorithms is a substantial topic by itself and
is treated in a subsequent paper. At the moment, we simply want to establish
feasibility of solution.

Both the iterative-parallel and the hierarchical segmentation algorithms can
function in an adaptive mode, but require some prior texture-type model parameter
information. Three possible means of obtaining this information are as follows.
l. Use small windows, perhaps 16x16 or 32x32 in a single image to estimate

model parameters. It is assumed here that the great majority of small

windows of this size coatain only one texture-type region. Effective
parameter cstimation 18 poszcible by raximizing the pseudo- likelihood

function (see section 3.3.1). Parameter estimates from small windows in a

texture-type region will cluster. Distributions for the various texture-

type model parameters can then be obtained.
2, Obtain prior distributions for texture-type model parameters from previously

segmented images.
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3. Produce a first crude segmentation based on gray level or image features and
image understanding. Use model parameters or parameter distributions

estimated from this initial segmentation.

The hierarchical segmenter is ideally suited to adaptation since large

region blocks are classified initially, and good parameter adaptation can be had

v v

by using these large blocks for parameter estimation as though each large block

SRR e
. LI AN

LS

3

contained data from one texture-type. In a typical large block, most of the
pixels will be from a region of the same texture-type. This is the approach
exhibited in Figs. 9b, 11b. Parameter adaptation realized by incrementally
updating parameter estimates following each iteration of the iterative

segmentation algorithm is discussed in a forthcoming paper.

6.0 Experiments

The segmentation algorithms have been run on visible light, infrared, and

LN

(3]
.

artificially generated data. Generally, all of our algorithms work extremely

Dt
o,

L 4
"<l

well on stationary artificially generated MRF's, almost as well on stationary
natural data, and less well but good on nonstationary natural data. The
following examples illustrate these cases. Fig. 8a consists of two constant gray
level squares in a background of some other constant gray level, plus white
Gaussian noise. The signal-io-noise ratio (the difference in average values in
the sguares and backgrcund divided by the noice standard deviation) is 1.

Segmentation by the iterative segmenter is carried out using an isotropic binary

field having parameter values a = -16.0, b,,. = 1.5. Fig. 8b is the initial

v
s
v

vr oA
s %

segmentation accomplished by assigning a pixel to square or background depending

2
A ]
L

v
.
2

on whether it is greater than or less than (robj * rback)/2, respectively. Here

R 10N
o LY s

- Tobj and rpack are the average picture function values in the object and the
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background, respectively. Following 21 passes through the image, the
segmentation converged to is that in Fig. 8C. Fig. 9 is the infrared image of a
tank and background to which has been added white Gaussian noise and illustrates
the importance of parameter adaptation in the segmentation process. The same
type of modelling used in Fig. 8 is appropriate here. The signal-to-noise ratio
is 1.3, and a 2nd order binary MRF is used. Fig. 9a is the segmentation produced
by the hierarchical segmenter using a ML (maximum likelihood) performance
functional, and incorrect values for robj, Tbacks 0. Starting with the same
model parameters as in Fig. 9abut using the adaptive segmenter, results in the
segmentation shown in Fig. 9b. Fig. 9c¢ is the result of running this segmenter
with parameters estimated asing unsupervised learning on the window (see [2])
prior to segmentation.

In Fig. 10 we are seeing experiments with the iterative-parallel segmenter

operating on artificially generated images. Two Gaussian textured regions are

present, both with the same means and conditional variances, but otherwise
different first order MRF's. There is a sinusocidal boundary separating the two
regions. The upper region has strong correlation in the vertical direction, j
.l
whereas the lower region has strong correlation in the horizontal direction. ;f' W
Model interaction parameters for the two stationary Gaussian fields are V-
Beyo = .3, and -.1 for the vertical and horizontal directions in the upper image,
and the permutation of these for the l~wer image. A second order binary S field :

was used with model parameters a = ~4.9, b.,. = 2 in the horizontal and verticzai

directions and 0.3 in the diagonal directions. Note that since the mean values
in the two texture-type regions are the same, it is impossible to do any
meaningful segmentation based on thresholding the picture function. Spatial
variation in the picture function must be exploited. Fig. 10a is the original

image.
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Fig. 10b is the initial segmentation based on use of the conditional likelihood
of the picture function at a point given its surround under each of the two
texture hypotheses. Fig. 10c is the segmentation resulting from the first
convergence of the algorithm. The segmentation is then perturbed using the
modified iterative-parallel segmenter (sec 4.1), and the algorithm run again.
After four such cycles, the segmentation produced is that in Fig. 10d. Measured
values of the pseudo -likelihood performance functional for the five segmentations
at the convergence were -1.607e, -1.612e, -1.613e, -1.613e, -l.6l4e,
respectively, where e is a constant. Note that the changes are small because the
pseudo- likelihood function is for the segmentation of a whole window, and the
number of pixel classification changes from one convergence to the next is small
compared with the number of pixels in the window. But this performance
functional is useful for deciding on whether a new convergent segmentation is
better than an earlier one.

Again, Fig. 1l illustrates the all important adaptive segmentation. Fig.
1l1a is the segmentation of the image data in Fig. 10, but now using the
hierarchical M.L. (maximum likelihood) segmenter with incorrect model parameters
for the Gaussian MRF texture model. Fig. 11b is the result of starting off with
the same incorrect parameters, but then running the segmenter in the adaptive
mode. The resulting segmentation can now be smoothed using a few passes of the
iterative segmenter with its binary region model. Hierarchical segmentation will
also work well on such staticnary data it the likelihood funcrion without B8
determinant (see Eq. 5a), or the pseudo-likelihood function is used as a
performance functional. These various performance functionals will give roughly
the same segmentations down to block sizes of 8 x 8 and sometimes 4 x 4 pixels,
but at the 2 x 2 pixel :solution use of the maximum likelihood performance
functional results in more accurate segmentation. Hence, use of the determinant

of B does make a difference! (see the discussion in Sec. 7.)
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&E Nonstationary data provides the real challenge to segmentation algorithms

Eii based on MRF data models. Figs. 12a-12h illustrate a number of considerations in
!! segmenting grass (upper) and earth (lower) regions in a portion of an outdoor

visible light scene, using the hierarchical segmenter. Because maximum
likelihood estimation of model parameters is computationally costly, we have
experimented with the computationally less costly maximum pseudo -likelihood model
parameter estimates. If the estimated parameter values result in B matrices

(Eq. 5a) that are nonpositive semidefinite, which is the case in Figs. 124, l2e,

the Gaussian likelihood function cannot be used as a performance functional in

‘

the hierarchical segmenter. Consequently, we consider three performance

functionals, namely, the L (likelihood), the L.W. (likelihood without the B

BT PR

determinant in Eq. 5a), and the P.L. (pseudo likelihood). In Figs. 12a-12e,

Adirafiinds nped 2t S SN Pt )

parameter values are estimated prior to segmentation. Figs. 12a, 12b, 12c are

——

e
o

hierarchical segmentations using the L. L.W., and P.L. performance functionals,

——

respectively, and maximum likelihood parameter estimates. >ccond order Lausslan

DS

MRF models were used. In these figures, the image is divided into four windows,

and segmenters are run independently in each. The maximum likelihood parameter

;'7.7.'

estimates were constrained to be those for a stationary Gaussian model and were

obtained by using asymptotic methods. Parameter estimates obtained are shown in

R ARSPUEN 2.
AR
L

the table. Figs. 12d, 12c are hierarchical segmentations using P.L. and L.W.
performance functionals respectively, and pseudo-likelihood parameter estimates .

B =yt

Estimator [texture-
- type ) uppar left|lower left
- region o mean  verticallhorizontal [lower right|upper right
&
N Max imum grass 32.0 158.0f .0339 462 0 -.0036
7’ Likelihood| earth 136.3 150.9 .0142 .483 -.00164 -.00123
- Maximum |grass | 27.7 | 157.0 .263 | .433 -.078 -.116
L Pseudo earth 59.1 151.2] .451 .537 -.233 ~.249
PE: Likelihood
"' Table
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Even though the image data is somewhat nonstationary, the combination of maximum
likelihood parameter estimates and L. segmentation performance functional is

best. In Figs. 1l2c, 12d and other experiments run with nonstationary image data,

the P.L. segmentation performance functional results in segmentations that
reasonably approximate the true boundary, but false boundaries are sometimes
found as well. For such data, hierarchical L.W. segmentation usually reasonably
approximates the true boundary when used with maximum likelihood parameter
estimates, but sometimes completely misses the boundary, as in Fig. l2e, when
used with maximum pseudo likelihood parameter estimates. The problem in this
latter case may be caused by abnormally large positive values for the exponent in
the likelihood-without-determinant for some erroneous segmentation because the B
matrix is non positive semidefinite and therefore has at least one negative
eigenvalue. Figs. 12f, 12g are the results of beginning with the segmentations
in Figs. l2a and 12d, respectively, and seaming with the iterative segmenter.
Notice that the effect of the seaming is to smooth out the estimates of the true
boundaries and to remove some of the erroneously estimated regions. Finally,
Fig. 12h is the classification of 8 x 8 pixel blocks in the image independently,
using a P.L. classifier, as discussed in Sec. 3.3.0, with maximum pseudo
likelihood parameter estimates. Note that almost all blocks are classified
correctly, suggesting that with slight modification the hierarchical P.L.
segmenter might be lese prome to genevating extraneous boundaries when the data
is difficult to distinguish (16 x 16 pixel blocks are all classified
correctly by the algorithm for this image.) Figure 13 is the hierarchical L.

segmentation of two nonstationary artificially generated textures with sinusoidal

boundary, based on use of maximum likelihood parameter estimates. The
hierarchical P.L. segmentation based on maximum pseudo- likelihood parameter
estimates was almost as good (there were no spurious segmentations), and this was

true of the other segmenters as well.

- . r e et R T T IC S
ST TR L UL R NN SRR T
R I U TR L AT N
TR LI IR PR . Y 'J‘.‘.A}l

P - 1.
y ISV IN VY




e S e i SRS A R 2 E s e A e At A A e e s e e e e o s oo o S e R
% ’ -

- 37 -

Fig. l4a is an artificially generated image of a Lambertian can illuminated
by a point source at infinity. Fig. l4b is the result of hierarchical
segmentation. Of importance here is that the window to be segmented consists of
portions of the images of the can top and can side at a location such that the
image intensities of the two surfaces are the same in a small region in the
center of the image. In other words, there is not a strong intensity
discontinuity between regions! The image model used for the two surfaces is a
constant plus noise for the can top, and a quadric polynomial plus noise for the
can side. The segmentation algorithm is a trivial extension of our algorithms
for segmenting models for which the image intensity over a region is constant
plus white Gaussian noise.

In Fig. 15a we see an interesting image in which there is some deterministic
geometric structure, largely in the house, but where the rest of the image is
largely stochastic texture structure. We chose six texture-types to work with,
the left tree foliage with roughly isotropic spatial variation (denoted trl)’ the
foliage of the large tree on the right with greater spatial correlation in the
vertical than in the horizontal direction (denoted trz)’ house roof shingles, skv,
road, and grass. A set of MRF model parameters was estimated for each of these
texture-types, from a small data window in each case. Then these models were
used to generate slightly larger windows of artificial images, and the generated

images were inserted in the picture close to the locations from which the data
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The other artificially generated square window images can be recognized in

'
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different locations in the picture. What is surprising is that the models appear

o

3

to capture the texture structure amazingly well. All of the models used are 2nd

order MRF's, except for the roof model which is 5th order. This higher order was
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necessary to capture the horizontal shingle structure because the angle involved
is different from O degrees with respect to the horizontal axis for the picture.
Fig. 15c illustrates the effectiveness of the pseudo-likelihood function (12a) as
a recognizer of the texture-type seen within a window. Window data
classifications were made independently of one another here. Notice that
incorrect classifications were made in the dark area in the foliage of the left
tree, and much of the sky region was incorrectly classified. The first set of
errors is due to the fact that the model parameters for a texture-type vary
(usually slowly) within an image, and this variation should be incorporated into
the models used. The second set of errors is due to the occurrence of artifacts
such as the images of telephone wires in the misclassified windows. Note that
the bushes and a third small tree-foliage region on the right have been
classified as t:r1 type regicns. This is because models were not introduced for
these texture-types, and the data seen looks very much like that in the tr, type
region. Finally, note that two windows toward the right side of the grass region
have been classified as road regions. Though it is difficult to tell from this

image, these windows lie in a driveway region that looks very much like the road

image texture. More windows in this region are not classified as road because

these other windows contain grass image texture as well.
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7.0 Physically Meaningful Models, Mathematical Correctness, and

Computational Complexity

We comment on two important problems in this section.
l. Consider Eq. (17). The meaning of p(yijlYij,sggl =1, S?j ) is that yjj is
conditioned only on those yy in the neighbor set D, in (5) for which 83 = 1. All
other yy in Dp are omitted; equivalently, they are set to 0. We shall refer to th{?.
yy that are set to 0 as constituting missing data. The same situation arises
with the hierarchical algorithm where the conditional likelihood of a block of
data must be computed. This conditioning of Yij by setting missing picture
function values to 0 is not physically meaningful and also leads to probabilities
of segmented images that do not constitute a consistent set of probabilities.
(Note, the missing data problem also occurs at the four sides of a window, but
since this window boundary is fixed and boundary effects die out away from the
boundary, significant harmful effects on segmentation do not occur here.) Small
improvement in segmentation accuracy can be made by correcting the problem. The

solution is to treat {yij} as though the texture-type 1 model is used to generate

all the data in the window, and a subset of the data points is chosen, namely,

those y, for which sy = 1. Then, the true conditional likelihood
P(yijlyy for which sy = 1, class 1) is computed. This conditional likelihood,

which for reasons given is not (5), is Gaussian. The conditional variance of ¥ij

is at least as large as 02 (1) and lies between this and the marginal variauce of
Yij for class 1. It can be computed approximately for various combinations of y,
present (see Appendix C, result 4). The true conditional mean of yij can be
simply computed iteratively, as briefly described in Appendix C, result 5.

Hence, with a modest amount of extra computation, a more physically meaningful
probability measure, which is also consistent can be used for image modelling for

the purpose of textured image segmentation. Of course, corresponding results

apply when working with 3231 = Q.
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The problem of having a consistent probability measure can be easily treated
directly by designing a single MRF that incorporates both a region and a texture

model [5,8]. Upon applying that formulation to our problem, the Gibbs potential

would be

G = [¥,-Uu)]® BQ) [¥,-uq1)] + [vo-um)]‘ B(0) [Yy-U(0)] + SBS.  (20)

Here, B(1l) and B (0) are the inverse covariance matrices for the region 1 and the

region 0 texture data vectors, respectively, and B is a matrix having values a

along the main diagonal and b,_, elsewhere. Note that the resulting p(Y,S) is
h exp G (21)

where h does not depend on the window partition for which p(Y,S) is

computed. This likelihood is not the same as in (2a) using (5a) to specify
p({yy}: sy=k|class k). The dependence of the likelihoods on the data Yj, Y, is
exactly the same in the two cases. However, whereas the likelihood which is
the combination of 2a and 5a has a multiplicative factor IB(k)lsi that is a
function of the partition of the window, h in (21) is not a function of the
partition. The multiplicative factor is substantial when the associated texture-
type region comprises many pixels. It is o~l(k) when Y) consists of one pixel.
It is possible to include additional quantities in {20) that results in a
modified (21) being more like the combination ¢f (2a) and (52), but it is not
clear that (21) can be modified to be close. For example, G can be modified to
include Zofév). This produces a somewhat strange MRF for modelling the image.

However, use of this G in an iterative algorithm would result in exactly the same

algorithm as in Eq. (18).
2. A second important problem is that the process defined by (5) may be

stationary Gaussian, nonstationary Gaussian or nonGaussian, depending on the

o
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Bij's. For example, as discussed earlier B in (5a) must be positive semidefinite
for the MRF in an NxN window to be Gaussian. This restricts the Bij's. As Moo,
the Bij's become increasingly restricted, and in the limit satisfy the
restrictions for a homogeneous Gaussian MRF. If B in (5a) is not positive
semidefinite, the resulting exponential still defines a MRF if the exponential
has finite integral. A sufficient condition for finiteness of the integral is
that |Yij| be uniformly bounded above. This will always be the case for picture

functions generated by real sensors.

8.0 Conclusions

MRF's appear to be very powerful for modelling textured images for the
purpose of textured image segmentation and classification. New methods for
image segmentation werz presented in this paper. These algorithms ar; not
computationally costly, and can be realized using parallel computer
architectures, thus permitting real~time image segmentation. The algorithms are
computationallf simple. However, there are subtle, probably important,
considerations to be aware of in using the approach presented. Further study of
these issues is worthwhile. Fortunately, the MRF's have an interesting
structure, and unlocking all of their secrets promises to be an jnteresting
experience. For the moment, the reader's attention is directed to the following
important consideraticnms.

1. Since the image texture models ueed are Gaucsian sgochastic processes, do
they provide any advantages over the use of Fourier analysis or finite impulse
response filtering? The answer is a definite yes! The primary advantage is that
Fourier analysis or finite impulse response filtering is applied over a
rectangular window of image data. The window must be large enough to include at

least a few spatial cycles of the picture function. Hence, the boundary
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estimation accuracy achievable with this method is poor. On the other hand,
segmentation of MRF models is very suitable to highly irregular boundaries. In
the experiments we have run, boundary location estimation error usually lies
between 0 and 3 pixels. Error analysis for the hierarchical algorithm is treated
in a subsequent paper [22]. A second advantage of the MRF approach is that
additional image model structure is easily incorporated. In this paper, we
incorporated a texture region model. Boundary shape models can be incorporated.
(We have found the use of boundary shape models to be of great use in earlier
work [1,2]). A third advantage of the MRF's is that they are ideally suited to
handling images where the texture parameters are a priori partially unknown or
are spatially varying. These are the conditions usually encountered. In this
paper, we have briefly exhibited an approach to treating the former case. In the
latter case, the spatial variation can be appreciable. For example, in Fig.l5
the texture in the dark portion of tree foliage type 1 is closer to the typical
texture in the region of tree foliage type 2. Therefore, estimating the region
occupied by a texture type should be based not on a fixed parameter model for a

texture-type picture function, but rather on one where the texture model

1 4

parameters at a point in a texture-type region are close in value to the model

a, 1,
(20 e 4
'1,1)-'
2l
PRI

parameter values at nearby points in the region. 1In [23] a MRF is used to model

PR R
“x v
.

beia's

parameter variation, and maximum likelihood estimation of these spatially varying
parameters is shown to be an important ingredient of Bayesian textured image

zegmeniation. Theugh the cas» of apriori fixed but partially unknown texture

parameters is easy to handle using the Fourier analysis approach to image

segmentation, it is not apparent how that approach could handle the case of

spatially varying texture parameters. The one advantage of Fourier Analysis with

respect to the MRF's is the ability to efficiently represent nonparametric

spectra. However, texture segmentation is probably practical only for simple
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™~ spectra having one or two modes. The MRF's should be good models for these, and

s
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indeed work well in practice.

2. It was shown that maximum likelihood segmentation of images of manufactured
parts is possible with the same algorithms. Here, the picture function of a
slowly curving 3-D surface is spatially slowly varying. Two approaches were
taken to this problem. The first was the modeling of the image of a surface as a
small piece of a MRF[13]. The MRF model parameters were treated as a priori.
partially unknown. The second was to treat this image as a polynomial with a
priori partially unknown parameter values plus white noise. In both cases, the
partially unknown parameter values were estimated during image gegmentation.

More extensive treatment of adaptive segmentation using the polynomial model is
given in a forthcoming paper.

3. Both segmentation algorithms presented are highly parallel , and will easily
run in real time on the appropriate architectures (which can be built using
present technology). The iterative relaxation algorithm has a very simple
structure, and is well suited to use with general MRF models--- even those having
non-constant parameters. Whereas the iterative algorithm will generally make

only a small number of passes through an image, there are cases where it may make

.

many passes when changing the classification of a region from an initial

-
-
-

PAE N A

),

classification of one texture-type to a final classification of another texture-

-'ln

type. 1In these situations, the algorithm changes only a few pixels at the region
boaadary during each pass thcough the image. A way to overcome this is to use

the iterative algorithm with 2x2 or 4x4 blocks or with blocks of decreasing size.

Such a modification would run much faster and would be a hybrid of our

hierarchical and relaxation algorithms. The hierarchical ripple filter [3] uses

this philosophy.
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The iterative algorithm is closely related to the annealing algorithms, but

runs faster though it may not always be quite as accurate in finding a globally
optimum image segmentation if the initial segmentation used in beginning the

iterations is highly in error. However, what is most important is that the

iterative algorithm will always work with nonstationary MRF models or with
conditional Gaussian models when the parameters are such that the picture
function is not quite Gaussian (see Sec. (6.0)) ; the annealing algorithms

usually will not work under these conditions. But these conditions are the ones

that_are often prevalent in real image data!

The hierarchical algorithm achieves huge computational savings through
certain divide and conquer type recursions (a logarithmic computational cost
through use of a new simple ring structure) and also through organizing the bulk
of the computation as computation on the data only. These data computations can
then be combined with model parameters, at small computational cost, to realize
texture segmentation. The complete computational cost bemefit of the algorithm is

realized only for fields with spatially constant parameters. However, the

hierarchical algorithm can always be applied to nonconstant-parameter MRF's, and
will always be effective in achieving high segmentation accuracy.

4, Three performance functionals are discussed and shown to be useful for the
recognition of blocks of textured image or for hierarchical textured-image
segmentation. These are the joint likelihood function with and without the
dererainants of the inverse covariance matrices, and the joint psevde-likelihood
function. The first functional usually produces the greatest accuracy, whereas

the accuracies of the latter two are comparable. Examples of behavior are given

in Sec. 6.0.




e M aie e e A i A S-Sk A B atcie e i hos ol Al Wi M i AR

L
P

-45-

)

Acknowledgement:

This work was partially supported by Army Research Office grant
#DAAG 29-81-K-0167, and National Science Foundation grants
#ECS-8119676 and ECS-8404774,.The authors are especially appreciative of
the critical contributions of Judith Silverman. She did most of the
programming and experimentation for the work reported. We also thank
Magda Butnaru for her contribution to the programming and
experimentation. Prof. A. Hanson, University of Massachusetts, Amherst,
was kind enough to provide us with portions of the image data base
developed by his group; the visible light data, Figs 12,15, came from
that set.

e AR

-~

References

1. D. B. Cooper, et al., "Stochastic Boundary Estimation and Object
Recognition", Computer Graphics and Image Processing, April 1980,
pp. 326-355. '

2. D. B. Cooper and F. Sung, "Multiple-Window Parallel Adaptive
Boundary Finding in Computer Vision', IEEE Trans. on Pattern
Analysis and Machine Intelligence, Vol. PAMI-5, No. 3, May 1983.

3. P. Schenker, et al., "Fast Adaptive Algorithms for Low Level
Scene Analysis: The Parallel Hierarchical Ripple Filter",
Conference Proceedings of the Fifth Inter. Symp. on Pattern
Recognition, Miami, Dec., 1980,

4, L.L. Scharf and H. Elliot, "Aspects of dynamic programming in
signal and image processing", IEEE Trans. Automatic Contr.,
vol AC-26, pp. 1018-1029, Oct. 1981.

5. H. Elliot, et al., "Image Segmentation Using Simple Markov Field
Models'", TR Ju81-DELENG~1l, Colorado State Univ., Electrical Eng.
Dept., June 1981.

6. C. W. Therrien, "Linear Filtering Models for Texture Classification
and Segmentation", Proc. of 5th Int. Conf. on Pattern Recognition,
Miami, Dec. 1980, pp.1132-1135.

7. H. Kaufman, et al., "Recursive Image Estimation: A Multiple Model
Approach",Proc. 18th Conf. on Decision and Control, Fort
Lauderdale, Florida, 12-14, Dec. 1979.

8. D. Geman and S. Geman, "Stochastic Relaxation, Gibbs Distribution
and Bayesian Restoration of Images", Brown University., Division
of Applied Math. T.R., September, 1983.

9. P. C. Chen and T. Pavlidis, "Image Segmentation as an Estimation
Problem", Computer Graphics and Image Processing, Vol. 12,

10. A. Rosenfeld, R. A, Hummel, and S.W. Zucker, ''Scene labeling by
relaxation operations", IEEE Trans. Syst., Man., Cybern.,
Vol. SMC-6, pp. 420-453, June 1976.

11. 0.D. Faugeras and M. Berthod, "Improving consistency and reducing
ambiguity in stochastic labeling: an optimization approach", IEEE
Trans. Pattern Anal. And Machine Intel., Vol. PAMI-3, pp. 412-424,
July 1981.

e SO U S U PO TR SO U S Pl S
e e e el At R T N L L L T T T L e T N
L N

P .
VIS Vi T TR AR N U I Sl ST SR S A St S et S
T VY (LI al s RIS - L




m ot el e aiue s wd ated ot A et bk A i & Sl SACRCAR SO
: - -, =
S

PR

.

3

L
-,

bt Y i iy

-46-

12. F. S. Cohen, "Parallel Adaptive Hierarchical Algorithm for Textured I
Image Segmentation Using Noncausal Markovian Fields", Ph.D. Thesis, R

. Division of Engineering, Brown University, Providence, RI., Aug.
. 1983.

A
[gRY

13. F.S. Cohen and D.B. Cooper, "Real-Time Textured Image Segmentation
Based on Non-Causal Markovian Random Field Models", Proc. of the
3rd Intl. Conf. on Robot Vision and Sensory Control, Cambridge,
Mass., Nov. 1983; Proc. SPIE 449 , pp. 17-28 (1984).

l4. F. Cohen, et al.,, "Simple Parallel Hierarchical and Relaxation
Algorithms for Segmenting Textured Images Based on Noncausal
Markovian Random Field Models,' Proc. of the 7th Int. Conf. on
Pattern Recognition, Montreal, Canada, July 1984.

15. J. Besag, "Spatial Interaction and the Statistical Analysis of
Lattice Systems'", Journal of the Royal Statistical Society, Series
B., 36, 1974, pp. 192-236.

16. M.S. Bartlett, The Statistical Analysis of Spatial Pattern,
Chapman and Hall, London, 1976.

17. J. Woods, "Two Dimensional Discrete Markovian Fields", IEEE Trans.
on Information Theory, Vol. II-18, No. 2, March 1972, 232-240.

18. S. Ranganath and A, Jain, "Two Dimensional Linear Prediction
Models Part I: SPECTRAL Factorization and Realization", T.R.
SIPL-83-5, Dept. of Electrical Eng., Univ. of California at Davis,
May 1983.

19. M. Ekstrom and J. Woods, "Two Dimensional Spectral Factorization
with Applications in Recursive Digital Filtering", IEEE Trans.
Acoust., Speech, Signal Processing, Vol. ASSP-24, #2, pp. 115-128,
April 1976.

20. R.J. Cross, "Markov Random Fields Texture Models", TR 80-02,
Dept. of Computer Science, College of Engineering, Michigan State
University, 1980.

21. R.L. Kashyap, et al., "Estimation and Choice of Neighbors in
Spatial Interaction Models of Images", IEEE Trans. on Information
Theory, Jan. 1983, pp.go-72.

22. Cohen paper in preparation.

2

l.;l

23. Cooper, et al., paper in preparation.

LA A

24. M. Loeve, Probability Theory, D. van Nostrand, 1960, p. 228.

25. G.E. Hinton and T.J. Sejnowski, "Optimal Perceptual Inference"
Proceedings I1EEE Comp. Soc. Conf. on Comp. Vision and Pattern
Recog., Washington, D.C., June 19-23, 1983, pp 448-453. Also, talk
at Brown Univ., April, 1984.

[l A A A
vl
Satet -..

OO D

‘l

aﬂ‘f:'vr.'ld'_ﬁq{{';«.:j:(._g{ LIRS



Appendix A

Proof of Result 2.
Under the free boundary condition,
p(X,Y) = constant-exp{-(1/202)[XtBxX + 2XtBxyY + YtByY]}
From this it can be seen that p(X|Y) 1s Gaussian with covariance matrix Bil and |
mean vector -BileyY. Hence,
p(X|Y) IBXI%(ZnaZ)_Nx/Z -« exp{-(1/202) [(X + BileyY)tBX(x + BileyY)]}

1By |'5(2102) ™/« exp(~(1/202) [XEByX + 2XTByyY + YEBE By Byyv])

Appendix B
Theorem
Consider C homogz2neous Gaussian MRF texture models; the covariance matrix
fsr every set of pixels in a texture-type region is nomsingular. Let 2(Y|k)
denote the discriminant (1/N2) 2n[ T p(yij|Yij,k)], k=1,2,...,C , for the kth
(i,3)
€ q
texture-type in an NxN pixel window. The texture recognizer based on choosing
the texture type having the largest discriminant incurs a probability of
misclassification that goes to 0 w.p.1 as N + =,

Proof

Assume that the texture-type under which the data was generated is k.

(v]k)=

=-()enl2m02(k)]- 1/8222(k) | A{yjj-u(k)- [ B8(K) [ym-u(k)]}2 (B1)
1,3 (2,m)2-1{,m-§

EQ eD
P

is the sample mean of approximately N2 identically distributed, partially

correlated r.v.'s
Zij(k):
= -Co)n(2002(k)1-[1/262 (1) ) {y y=uC) = ] B [y, -u(k)]}?

(2,m) 2-1i,m-3
eD
p
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Since {yij} is homogeneous, so is (B2) for all k. Because {yij} is a
nonsingular homogeneous MRF, both its autocorrelation function and that of
(82) fall off exponentially for large distance from the origin. Using this
and the Borel Cantelli Lemma [24], it is easy to prove a strong law of
large numbers, specifically that |

L(Y|k) T E[zij(k)lko] as N + =, (B3)
where the expection is with respect to the measure for Y.
Claim:

E[ (ko)lko] > E[zij(k)lko] for kyk . (B4)

zij
This comes from a standard information theory argument as follows.

E[zij(k)lk] =

P(yy Y k) - ply Y ,k)'l
= _ 113’ o 14' 714

B 7N PRRLICAR DT o

[plyygl¥ygaky) - plygylY, 010, [k )y, av,
= E[zij(ko)!ko],
with equaliity for p(yijIYij’k) = p(yijIYij,ko) for all yij’Yij' Since
p(yij!Yij’ k) is an exponential function in yij and Yij’ because of the
nonsingularity of the process it follows that there is equality only 1if
k=k°. Inequality (E5) comes from use of the inequality

¢n(l +€) <e for -w < ¢ <m,

Because of the preceding inequality and (g3),

(B4
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¢
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E(Ylko)/l(YIk) — 5 a as M, ke{l,2,...,C} and k # ko, where a is a

constant strictly greater than 1. Thus, probability of correct classification

converges to 1 with probability 1 as N goes to infinity.

The proof can be extended to nonGaussian MRF's and to some nonstationary
ones. A simple procedure is to consider the sequence Ly, where Ly takes the
value 1 if [ } p(yij[Yij,ko)/p(yijlYij,k)] < 1, and is 0 otherwise.

(i,3)
e Q

b
't
P
NCANE

"y

~a
»)

Note that k # kg in the inequality. Then the idea is to prove that as M=, Ly
takes the value 1 only finitely often. But this will be the case, by the Borel
Cantelli Lemma, if ( 2 p{Lp = 1})<o . Hence, this proof depends on showing for

N=2
the MRF model under consideration that the preceding sum of probabilities is

finite.

Appendix C

Some useful likelihood functions

Let an NxN pixel window be partitioned into three regions, and let the

picture function at the pixels in these regions be components of the column
vectors W, X, Y. Let Z = (XtYt)t. The picture function over the window is a
constant parameter Gaussian MRF. Then the following results are already derived

in the paper or can be derived using similar techniques. Let the field have 0

mean value.

1. p(W,2) = (2102)~N%/2 131?

. exp {-(1/202) [WtByW + ZtBzZ + 2 WtByzZ]}
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where B, By, Bz are the within interaction matrices for the whole window, W, and

Z, respectively; and Byz is the between interaction matrix for W and Z. See

Secs. 2.2.1 and 3.2.1.

-1 2.-1
2. p(z|w) ~ N(-B;"B, W, o°B,")

(See Section 3.2.1)

. 2 -1 -1
3. (i) p(Z) ~ N (0,0 [Bz - BZWBW sz] )
This result follows from p(W,2) = p(W|2)p(Z) and use of results 1l and 2.
Note that the covariance matrix for Z is "bigger' than (BZ)“l, because (Bz)~1l

is the conditional covariance matrix for Z given that the surrounding neighbors

have value O.

(ii) p(2) = cp(W,2)
where ¢ is a suitable normalizing constant, and W is the value of W that
maximizes the joint likelihood p(W,Z). This result is discussed in [12; pp.

55,56] and a simple iterative relaxation algorithm for computing W is discussed

in [13; Appendix], and also described as result 5 in this Appendix of this paper.

4 PO ANC L, a2(By - By B3t B 1Y

This result follows from p(X,YlW) ~n N(.,Bgl) obtained from use of result 2, and
then the application of result 2 to p(X',Y') where Z' is Z|W. The fact that
cov[Y|W] does not depend on B, or an makes sense, since the covariance matrix
for Y when Z is conditioned on the free boundary condition at its border is
exactly the same as when conditioning on a combination of the free boundary

condition and on W where W borders on Z.
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5. We describe a simple algorithm for computing E[Y]W] when W, X, Y, Z are as
previously described. Note that E[Z|W] = [(E[X|W])E, (E[YlW])t]t,so that E[Y|W)
is the lower vector in E[le]. From p(Z,W) = p(Z]W)p(w), it is seen that E[Z]|W]
is the value of Z for which p(Z,W) is a maximum, i.e., it is the maximum
likelihood estimate of Z. But p(Z,W) is a quadric form in Z with positive
semidefinite matrix. Assume the matrix is positive definite. Hence, p(Z,W) has
only one maximum as a function of Z, and any one of many iterative algorithms may
be used to compute this value of Z. We use a relaxation algorithm. Consider
updating the estimate z?j of the component of Z at pixel (i, j) found at the nth
stage. Then z?}l, the estimate at the n+l stage, is computed as

z'i‘gl =u+ ) Br—y(tD - W)

ver

where this is the expression for the conditional mean in Eq. (5), and tg is a
component of either Z™ or W, depending on v. As with the relaxation algorithm in

Sec. 4.1, estimates at all locations in a code can be made simultaneously.
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